Strumenti Utente



qstruct:teoria:qsection:integrali_rotazione

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisione Revisione precedente
Prossima revisione
Revisione precedente
qstruct:teoria:qsection:integrali_rotazione [2014/11/26 13:31]
mickele
qstruct:teoria:qsection:integrali_rotazione [2021/06/13 13:10] (versione attuale)
Linea 27: Linea 27:
  
 Le formule che ci permettono di calcolare i momenti di terzo ordine in caro di rotazione di angolo $\theta$ sono Le formule che ci permettono di calcolare i momenti di terzo ordine in caro di rotazione di angolo $\theta$ sono
 +
 +$$\iint \limits_{S} y_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \\
 +\cos^3 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z + 3 \cos^2 \theta \, \sin \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + 3 \cos \theta \, \sin^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin^3 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
 +
 +$$\iint \limits_{S} z_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \\
 +- \sin^3 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z + 3 \sin^2 \theta \, \cos \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - 3 \sin \theta \, \cos^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \cos^3 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
 +
 +$$\iint \limits_{S} y_{\odot}^2 \, z_{\odot} \; \mathrm{d}y \mathrm{d}z = \\
 +- \sin \theta \, \cos^2 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z - 2 \sin^2 \theta \, \cos \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - \sin^3 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z \\
 ++ \cos^3 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + 2 \sin \theta \, \cos^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin^2 \theta \, \cos \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
 +
 +$$\iint \limits_{S} y_{\odot} \, z_{\odot}^2 \; \mathrm{d}y \mathrm{d}z = \\
 +\sin^2 \theta \, \cos \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z - 2 \sin \theta \, \cos^2 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + \cos^3 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z \\
 ++ \sin^3 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - 2 \sin^2 \theta \, \cos \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin \theta \, \cos^2 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
  
 Si riporta di seguito il dettaglio dei calcoli Si riporta di seguito il dettaglio dei calcoli
  
 $$\iint \limits_{S} y_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right)^3 \; \mathrm{d}y \mathrm{d}z = \\ $$\iint \limits_{S} y_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right)^3 \; \mathrm{d}y \mathrm{d}z = \\
-$$+\iint \limits_{S} \left( \cos^3 \theta \, y^3 + 3 \cos^2 \theta \, \sin \theta \, y^2 \, z + 3 \cos \theta \, \sin^2 \theta \, y \, z^2 + \sin^3 \theta \, z^3 \right) \; \mathrm{d}y \mathrm{d}z = \\ 
 +\cos^3 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z + 3 \cos^2 \theta \, \sin \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + 3 \cos \theta \, \sin^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin^3 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
  
 $$\iint \limits_{S} z_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( - \sin \theta \, y + \cos \theta \, z \right)^3 \; \mathrm{d}y \mathrm{d}z = \\ $$\iint \limits_{S} z_{\odot}^3 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( - \sin \theta \, y + \cos \theta \, z \right)^3 \; \mathrm{d}y \mathrm{d}z = \\
-$$+\iint \limits_{S} \left( - \sin^3 \theta \, y^3 + 3 \sin^2 \theta \, \cos \theta \, y^2 \, z - 3 \sin \theta \, \cos^2 \theta \, y \, z^2 + \cos^3 \theta \, z^3 \right) \; \mathrm{d}y \mathrm{d}z = \\ 
 +- \sin^3 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z + 3 \sin^2 \theta \, \cos \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - 3 \sin \theta \, \cos^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \cos^3 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
  
 $$\iint \limits_{S} y_{\odot}^2 \, z_{\odot} \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right)^2 \, \left( - \sin \theta \, y + \cos \theta \, z \right) \; \mathrm{d}y \mathrm{d}z = \\ $$\iint \limits_{S} y_{\odot}^2 \, z_{\odot} \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right)^2 \, \left( - \sin \theta \, y + \cos \theta \, z \right) \; \mathrm{d}y \mathrm{d}z = \\
-$$+\iint \limits_{S} \left( \cos^2 \theta \, y^2 + 2 \sin \theta \, \cos \theta \, y \, z + \sin^2 \theta \, z^2 \right) \, \left( - \sin \theta \, y + \cos \theta \, z \right) \; \mathrm{d}y \mathrm{d}z = \\  
 +\iint \limits_{S} \left( - \sin \theta \, \cos^2 \theta \, y^3 - 2 \sin^2 \theta \, \cos \theta \, y^2 \, z - \sin^3 \theta \, y \, z^2 + \cos^3 \theta \, y^2 \, z + 2 \sin \theta \, \cos^2 \theta \, y \, z^2 + \sin^2 \theta \, \cos \theta \, z^3 \right) \; \mathrm{d}y \mathrm{d}z = \\ 
 +- \sin \theta \, \cos^2 \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z - 2 \sin^2 \theta \, \cos \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - \sin^3 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z \\ 
 ++ \cos^3 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + 2 \sin \theta \, \cos^2 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin^2 \theta \, \cos \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$
  
 $$\iint \limits_{S} y_{\odot} \, z_{\odot}^2 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right) \, \left( - \sin \theta \, y + \cos \theta \, z \right)^2 \; \mathrm{d}y \mathrm{d}z = \\ $$\iint \limits_{S} y_{\odot} \, z_{\odot}^2 \; \mathrm{d}y \mathrm{d}z = \iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right) \, \left( - \sin \theta \, y + \cos \theta \, z \right)^2 \; \mathrm{d}y \mathrm{d}z = \\
-$$+\iint \limits_{S} \left( \cos \theta \, y + \sin \theta \, z \right) \, \left( \sin^2 \theta \, y^2 - 2 \sin \theta \, \cos \theta \, y \, z + \cos^2 \theta \, z^2 \right) \; \mathrm{d}y \mathrm{d}z = \\ 
 +\iint \limits_{S} \left( \sin^2 \theta \, \cos \theta \, y^3 - 2 \sin \theta \, \cos^2 \theta \, y^2 \, z + \cos^3 \theta \, y \, z^2 + \sin^3 \theta \, y^2 \, z - 2 \sin^2 \theta \, \cos \theta \, y \, z^2 + \sin \theta \, \cos^2 \theta \, z^3 \right) \; \mathrm{d}y \mathrm{d}z = \\ 
 +\sin^2 \theta \, \cos \theta \iint \limits_{S} y^3 \; \mathrm{d}y \mathrm{d}z - 2 \sin \theta \, \cos^2 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z + \cos^3 \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z \\ 
 ++ \sin^3 \theta \iint \limits_{S} y^2 \, z \; \mathrm{d}y \mathrm{d}z - 2 \sin^2 \theta \, \cos \theta \iint \limits_{S} y \, z^2 \; \mathrm{d}y \mathrm{d}z + \sin \theta \, \cos^2 \theta \iint \limits_{S} z^3 \; \mathrm{d}y \mathrm{d}z $$

qstruct/teoria/qsection/integrali_rotazione.1417005086.txt.gz · Ultima modifica: 2021/06/13 13:10 (modifica esterna)

Facebook Twitter Google+ Digg Reddit LinkedIn StumbleUpon Email