Strumenti Utente



qstruct:teoria:qeasycncr:sezione_rettangolare_pressoflessione

Sezione rettangolare - Pressoflessione

Tensioni sezione omogenizzata parzialmente reagente

E' necessario distingeure due casistiche:

  • lembo superiore compresso
  • lembo inferiore compresso

I problemi nascono dalla necessità di ricalcolare le altezze utili delle armature.

Lembo superiore compresso

Poiché il cls reagisce solo a compressione, il primo passo è la determinazione della distanza $x$ dell'asse neutro dal lembo superiore compresso. Per farlo dobbiamo risolvere l'equazione di terzo grado (vedi Pressoflessione retta)

$$a \; x^3 + b \; x^2 + c \; x + d = 0 $$

in cui

$$a = N \, b \\ b = - 3 \left( M_y + N \frac{h}{2} \right) b \\ c = 6 \alpha_e \left[ N \left( \sum \limits_i A_{sl,i} d_i \right) - \left( M_y + N \frac{h}{2} \right) \left( \sum \limits_i A_{sl,i} \right) \right] \\ d = 6 \alpha_e \left[ \left( M_y + N \frac{h}{2} \right) \left( \sum \limits_i A_{sl,i} d_i \right) - N \left( \sum \limits_i A_{sl,i} d_i^2 \right) \right] $$

Successivamente passiamo al calcolo delle tensioni. Per farlo dobbiamo prima calcolare la posizione del baricentro della sezione omogeneizzata reagente. Calcoliamo $h_G$, distanza del baricentro dal lembo superiore compresso.

$$A_\alpha = b \cdot x + \alpha_e \sum \limits_i A_{s,i} $$

$$S_\alpha = b \frac{x^2}{2} + \alpha_e \sum \limits_i A_{s,i} \cdot d_i $$

$$h_G = \frac{S_\alpha}{A_\alpha} $$

Conseguentemente ricalcoliamo il momento riferendolo al baricentro appena determinato

$$M_{\alpha} = M - N \left( h_G - \frac{h}{2} \right)$$

Per applicare le formule del De Saint Venant ci manca il momento di inerzia della sezione omogeneizzata reagente

$$I_\alpha = b \frac{x^3}{12} + b \cdot x \left( h_G - \frac{x}{2} \right)^2 + \alpha_e \sum \limits_i A_{s,i} \left( d_i - h_G \right) ^2 = \\ b \left( \frac{x^3}{12} + h_G^2 \cdot x - h_G \cdot x^2 + \frac{x^3}{4} \right) + \alpha_e \left( \sum \limits_i A_{s,i} d_i^2 - 2 h_G \sum \limits_i A_{s,i} d_i + h_G^2 \sum \limits_i A_{s,i} \right) = \\ b \left( \frac{x^3}{3} - h_G \cdot x^2 + h_G^2 \cdot x \right) + \alpha_e \left( \sum \limits_i A_{s,i} d_i^2 - 2 h_G \sum \limits_i A_{s,i} d_i + h_G^2 \sum \limits_i A_{s,i} \right) $$

Finalmente possiamo calcolare le tensioni nel cls

$$\sigma_{c,sup} = \frac{N}{A_\alpha} + \frac{M_{\alpha}}{I_\alpha} \left( - h_G\right)$$

$$\sigma_{c,inf} = 0$$

e nell'acciaio

$$\sigma_{s,i} = \alpha_E \left[ \frac{N}{A_\alpha} + \frac{M_{\alpha}}{I_\alpha} \left( d_i - h_G\right) \right] $$

Come verifica possiamo calcolare la distanza dell'asse neutro dal lembo superiore compresso seguendo

$$\frac{N}{A_\alpha} + \frac{M_{\alpha}}{I_\alpha} \left( x - h_G\right) = 0 \Longrightarrow \frac{M_{\alpha}}{I_\alpha} \left( x - h_G\right) = - \frac{N}{A_\alpha} \Longrightarrow x = h_G - \frac{N \cdot I_\alpha}{M_{\alpha} \cdot A_\alpha} $$

Lembo inferiore compresso

Anche in questo caso dovremo risolvere un'equazione del tipo

$$a \; x^3 + b \; x^2 + c \; x + d = 0 $$

Cambiano però i coefficienti che ora, con le sostituzioni $d_i \longrightarrow h - d_i$ e $M \longrightarrow -M$, diventano

$$a = N \, b \\ b = - 3 \left( - M + N \frac{h}{2} \right) b \\ c = 6 \alpha_e \left[ N \left( \frac{h}{2} \sum \limits_i A_{sl,i} - \sum \limits_i A_{sl,i} \; d_i \right) + M \sum \limits_i A_{sl,i} \right] \\ d = 6 \alpha_e \left[ - M \left( h \sum \limits_i A_{sl,i} - \sum \limits_i A_{sl,i} \; d_i \right) - N \left( \frac{h^2}{2} \sum \limits_i A_{sl,i} - \frac{3}{2} h \sum \limits_i A_{sl,i} \, d_i + \sum \limits_i A_{sl,i} \, d_i^2 \right) \right] $$

Conseguentemente passiamo al calcolo della posizione del baricentro rispetto al lembo compresso

$$S_\alpha = b \frac{x^2}{2} + \alpha_e \sum \limits_i A_{s,i} \left( h - d_i \right) = b \frac{x^2}{2} + \alpha_e \left( h \sum \limits_i A_{s,i} - \sum \limits_i A_{s,i} \cdot d_i \right) $$

$$h_G = \frac{S_\alpha}{A_\alpha} $$

Riferiamo il momento al baricentro appena calcolato

$$M_{\alpha} = - M - N \left( h_G - \frac{h}{2} \right)$$

Calcoliamo il momento di inerzia della sezione omogeneizzata parzialmente reagente

$$I_\alpha = b \frac{x^3}{12} + b \cdot x \left( h_G - \frac{x}{2} \right)^2 + \alpha_e \sum \limits_i A_{s,i} \left[ \left( h - d_i \right) - h_G \right]^2 = \\ b \left( \frac{x^3}{12} + h_G^2 \cdot x - h_G \cdot x^2 + \frac{x^3}{4} \right) + \alpha_e \sum \limits_i A_{s,i} \left[ \left( h - h_G \right)^2 - 2 d_i \left( h - h_G \right) + d_i^2 \right] = \\ b \left( \frac{x^3}{3} - h_G \cdot x^2 + h_G^2 \cdot x \right) + \alpha_e \left[ \left( h - h_G \right)^2 \sum \limits_i A_{s,i} - 2 \left( h - h_G \right) \sum \limits_i A_{s,i} d_i + \sum \limits_i A_{s,i} d_i^2 \right] $$

Con i dati raccoli passiamo infine al calcolo delle tensioni

$$\sigma_{c,sup} = 0.0$$

$$\sigma_{c,inf} = \frac{N}{A_\alpha} + \frac{M_{\alpha}}{I_\alpha} \left( - h_G\right)$$

$$\sigma_{s,i} = \alpha_E \left[ \frac{N}{A_\alpha} + \frac{M_{\alpha}}{I_\alpha} \left( h - d_i - h_G \right) \right] $$

La distanza dell'asse neutro dal lembo superiore è data da

$$ x = h - \left( h_G - \frac{N \cdot I_\alpha}{M_{\alpha} \cdot A_\alpha} \right) $$


qstruct/teoria/qeasycncr/sezione_rettangolare_pressoflessione.txt · Ultima modifica: 2014/07/04 12:23 (modifica esterna)

Facebook Twitter Google+ Digg Reddit LinkedIn StumbleUpon Email